钢铁生产与欧盟 CBAM 应对策略
一、全球主流钢铁生产工艺路径对比
| 工艺路径 |
BF/BOF (高炉-转炉) |
DRI-EAF (直接还原铁-电弧炉) |
Scrap-EAF (废钢-电弧炉) |
| 全球占比 |
~68% (主导地位) |
较低 |
中国 9.7% (2023), 目标 70% |
| 碳排放强度 |
1.8–2.1 tCO₂-eq/t 钢 |
理论值可低至 0.3 tCO₂-eq/t 钢 |
典型值 0.4, 优化后 0.34 tCO₂-eq/t 钢 |
| 核心原料 |
铁矿石 + 冶金焦炭 |
高品位铁矿 (>67%) + 天然气/绿氢 |
废钢 |
| 投资成本 |
极高 (需高炉、焦化厂等) |
高 (需还原气系统) |
较低 (约为 BF/BOF 的 63%) |
| 主要挑战 |
高碳排、环保压力大 |
依赖稳定气源/绿氢,地域限制强 |
废钢采购成本高 (占81%) |
关键洞察: Scrap-EAF 工艺因其最低的碳足迹和相对成熟的技术,成为当前应对 CBAM 最现实、最具成本效益的转型路径。
二、欧盟碳边境调节机制 (CBAM) 核心要点
1. CBAM 如何运作?
- 目标:防止“碳泄漏”,确保欧盟内外企业承担同等的碳成本。
- 覆盖产品:钢铁、水泥、电力、化肥、铝、氢等。
- 计税基础:进口产品的“隐含碳排放量”(直接+间接排放)。
- 付费方:欧盟境内的“报关进口商”或其授权代表。
2. 关键时间节点
- 2026年1月1日: CBAM 进入“监测期”,开始收集出口数据(无需付费)。
- 2027年2月1日: CBAM 证书开始销售。
- 2027年9月30日: 提交首份年度申报(涵盖2026年数据)。
- 2028年起: 可能开启核查机构互认(目前不确定)。
3. 排放基准值与成本计算
- BF/BOF: ≈ 1.9–2.2 tCO₂/t 钢
- DRI/EAF: ≈ 1.3–1.5 tCO₂/t 钢
- Scrap/EAF: ≈ 0.4–0.6 tCO₂/t 钢
应税排放量 = 实际排放量 - (欧盟基准值 × 进口数量 × 免费配额比例)
若实际排放 ≤ 基准值,则无需支付 CBAM 费用。
4. 使用实际值 vs. 默认值的成本差异(模拟)
假设: CBAM 证书价格 = 80 欧元/吨,免费配额 = 1.364 tCO₂/t
• 使用实际值 (1.7 tCO₂): 成本 ≈ 29.60 欧元/吨
• 使用中国默认值 (3.17 tCO₂): 成本 ≈ 172.80 欧元/吨
结论:使用经核查的实际排放值,成本可降低近6倍!
三、供应商应对 CBAM 的关键行动
1. 核心挑战
原材料生产环节的碳排放占产品总排放的 90%-95%。因此,必须向上游追溯。
2. 必须向供应商索取的信息
- 上游工厂名称及具体地址(用于核查)
- 明确的冶金路线(BF/BOF, Scrap-EAF, DRI-EAF)
- 各冶金路线在总产量中的占比(如同时使用多种路线)
- 经第三方核证的碳排放数据(直接+间接)
- 支持性文件(如 EN 10204, MTC, EPD 等)
3. 不同工艺路线的 CBAM 影响
- BF/BOF (长流程): 若使用欧盟默认值(如 3.17),将面临 400-500元人民币/吨以上 的高额碳税。
- Scrap-EAF (短流程): 排放显著低于基准值,很可能无需缴纳 CBAM 税费。
- H₂-DRI + EAF: 几乎零碳排,具备最强的出口竞争优势。
行动呼吁:立即要求您的上游钢厂提供详细的冶炼路径和经核证的碳排放证明。这是控制未来出口成本、维持欧盟市场竞争力的唯一途径。
四、未来趋势与中国转型
- 结构性转型信号: 中国已明确提出将电弧炉(EAF)钢占比从 2023 年的 9.7% 提升至 70% 的长期目标。这不仅是环保要求,更是应对国际贸易新规则(如 CBAM)的战略举措。
- 贸易格局重塑: CBAM 将深刻改变全球钢铁贸易流向,欧盟进口将更倾向于选择来自低碳技术路径(尤其是 Scrap-EAF)的供应商。
- 全球钢厂的绿色升级已从“可选项”变为“必选项”。
基于《了解上游钢铁生产-欧盟政策以及避免高碳排税.pptx》内容整理 | 2026年2月
Steel Production and EU CBAM Response Strategy
1. Comparison of Global Mainstream Steel Production Routes
| Production Route |
BF/BOF (Blast Furnace – Basic Oxygen Furnace) |
DRI-EAF (Direct Reduced Iron – Electric Arc Furnace) |
Scrap-EAF (Scrap-based Electric Arc Furnace) |
| Global Share |
~68% (Dominant) |
Low |
China: 9.7% (2023), Target: 70% |
| Carbon Intensity |
1.8–2.1 tCO₂-eq/tonne steel |
Theoretical minimum: ~0.3 tCO₂-eq/tonne steel |
Typical: 0.4; Optimized: 0.34 tCO₂-eq/tonne steel |
| Key Inputs |
Iron ore + Metallurgical coke |
High-grade iron ore (>67%) + Natural gas / Green hydrogen |
Scrap steel |
| Capital Cost |
Very high (requires blast furnace, coking plant, etc.) |
High (requires reducing gas system) |
Lower (~63% of BF/BOF) |
| Main Challenges |
High emissions, strong environmental pressure |
Dependent on stable gas/green H₂ supply; strong geographical constraints |
High scrap procurement cost (81% of total) |
Key Insight: The Scrap-EAF route offers the lowest carbon footprint and mature technology, making it the most realistic and cost-effective transition path to comply with CBAM.
2. Key Elements of the EU Carbon Border Adjustment Mechanism (CBAM)
1. How Does CBAM Work?
- Objective: Prevent “carbon leakage” by ensuring equal carbon costs for EU and non-EU producers.
- Covered Products: Iron & steel, cement, electricity, fertilizers, aluminum, hydrogen, etc.
- Tax Base: “Embedded emissions” (direct + indirect) of imported products.
- Obligated Party: EU-based “importer of record” or its authorized representative.
2. Key Timeline
- 1 Jan 2026: CBAM enters “Reporting Period” – data collection begins (no payment required).
- 1 Feb 2027: CBAM certificates become available for purchase.
- 30 Sep 2027: First annual declaration due (covering 2026 data).
- From 2028: Possible mutual recognition of verifiers (TBC).
3. Emission Benchmarks & Cost Calculation
- BF/BOF: ≈ 1.9–2.2 tCO₂/tonne steel
- DRI/EAF: ≈ 1.3–1.5 tCO₂/tonne steel
- Scrap/EAF: ≈ 0.4–0.6 tCO₂/tonne steel
Taxable Emissions = Actual Emissions – (EU Benchmark × Import Quantity × Free Allowance Ratio)
If actual emissions ≤ benchmark, no CBAM payment is required.
4. Cost Difference: Using Actual vs. Default Values (Simulation)
Assumption: CBAM certificate price = €80/tonne, Free allowance = 1.364 tCO₂/tonne
• Using actual value (1.7 tCO₂): Cost ≈ €29.60/tonne
• Using China default value (3.17 tCO₂): Cost ≈ €172.80/tonne
Conclusion: Using verified actual emissions data reduces costs by nearly 6x!
3. Critical Actions for Suppliers
1. Core Challenge
Upstream raw material production accounts for 90–95% of total product emissions. Therefore, traceability upstream is essential.
2. Information to Request from Suppliers
- Name and exact address of upstream production facility (for verification)
- Clear metallurgical route (BF/BOF, Scrap-EAF, DRI-EAF)
- Percentage share of each route in total production (if multiple routes used)
- Third-party verified carbon emission data (direct + indirect)
- Supporting documents (e.g., EN 10204, MTC, EPD)
3. CBAM Impact by Production Route
- BF/BOF (Integrated): Using EU default values (e.g., 3.17) could incur carbon tariffs exceeding ¥400–500 RMB/tonne.
- Scrap-EAF (Short Process): Emissions significantly below benchmark – likely exempt from CBAM fees.
- H₂-DRI + EAF: Near-zero emissions – strongest competitive advantage for EU exports.
Call to Action: Immediately require your upstream steel mills to provide detailed metallurgical routes and verified carbon emission certificates. This is the only way to control future export costs and maintain competitiveness in the EU market.
4. Future Trends & China’s Transition
- Structural Shift: China has set a long-term target to increase EAF steel share from 9.7% (2023) to 70%. This is not only an environmental imperative but also a strategic response to new global trade rules like CBAM.
- Trade Realignment: CBAM will reshape global steel trade flows, with EU imports favoring suppliers using low-carbon routes (especially Scrap-EAF).
- Green transformation of global steel mills has shifted from “optional” to “mandatory.”
Compiled from “Understanding Upstream Steel Production – EU Policy and Avoiding High Carbon Tariffs.pptx” | February 2026